Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1178797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215207

RESUMO

Introduction: Colored potatoes comprise many bioactive compounds that potentially support human health. Polyphenols present in them have associated therapeutic benefits like antimutagenic and anticarcinogenic properties. Method: The current study aimed to explore the effects of different blanching methods (steam blanching, hot water blanching, and microwave-assisted blanching) on the phytochemical and structural aspects of PP-1901 and Lady Rosetta (LR) potato varieties. Changes in the antioxidant activity, color, total ascorbic acid, phenolic, and flavonoid content were based on the variations in parameters including temperature (blanching using hot water and steam) and capacity 100- 900 W (blanching using microwave). Results: For both PP-1901 and LR varieties, all the blanching methods led to a significant reduction in residual peroxidase activity, as well as affecting their color. The preservation of bioactive substances exhibited a microwave steam>hot water blanching trend. Blanching significantly increased the antioxidant activity of all the samples. Additionally, Fourier-transform infrared spectroscopy revealed that phytocompounds were retained to their maximum in microwave-blanched samples, especially at 300 W. The type of blanching method significantly affected the thermal properties of potatoes by disrupting the ordered structure of the matrix. Discussion: Microwaves at 300 W can be used as a novel and suitable alternative technique for blanching potatoes, which successfully retained the original quality of it in comparison to steam and hot water blanching.

2.
Food Res Int ; 155: 111038, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400426

RESUMO

Considering the well-being cognizance of masses, the microgreens have emerged as the potential therapeutic functional foods for improving the overall health by dietary supplementation. Microgreens have delicate texture, distinctive flavors and exceptional volume of various nutrients accounting for higher neutraceutical benefits compared to their mature counterparts. Mounting interest in microgreens owes not only to their nutritional significance but also to their fascinating organoleptic traits. Many factors like rapid shrinkage of the land resources, lifestyle modification, healthy diet habits, the functional importance of food etc. cumulatively have resulted in increased interest in the microscale production of vegetables for the ready-to-eat market. Augmenting the production of secondary metabolites could provide more nutritional benefits, sensory attributes, and resistance to pests while, sharing many characteristics with sprouts, they are not associated with any foodborne illness. Their production by manipulation of agronomic practices like seeds, growing media, and light quality and biofortification with nutrients may result in nutrient-rich produce. These high-value crops typically characterized by short postharvest life and several pre a-harvest treatments can effectively maintain the shelf life of microgreens. Further, several genetic improvement tools can enhance the availability of bioactive compounds with minimum antinutritional factors. In this review, the comparative overview of the nutritional significance of microgreens with sprouts and their mature counterparts has been discussed. Further, the advances or manipulations in production technologies, the involvement of breeding programmes, and efficient post-harvest technologies to promote cost-effective production and future strategies for maintaining the shelf life and quality of microgreens have been argued.


Assuntos
Melhoramento Genético , Verduras , Biofortificação , Valor Nutritivo , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...